Selection Guidelines

Tubing life performance is just one of many factors present in your pumping applications. The charts in this section will assist you in selecting tubing for your pumping application.

Tubing life is shown in hours at various motor speeds while continuously pumping water at 21°C (70°F) and 0 psig (0 bar). Masterflex tubing life data is calculated from time to failure or reduction to 50% flow rate, whichever comes first.

In general:
- The Norprene® and PharMed® BPT tubing formulations offer the best tubing life in all applications where the fluid being pumped is chemically compatible
- High-performance precision tubing has a 20 to 30% increased tubing life over Precision tubing
- High-pressure Norprene and PharMed BPT have the best life in pressure applications
- Peroxide-cured silicone tubing offers up to 40% more tubing life. Platinum-cured silicone tubing offers better biocompatibility and fewer extractables. BioPharm Plus platinum-cured silicone tubing lasts up to five times longer than other platinum-cured silicone tubings.

Other factors to consider when determining the best tubing for your application:
- Fluid compatibility
- Fluid temperature
- System pressure
- Motor rpm
- Clarity of tubing
- Duty cycle
- Maintenance periods
- Tubing purity
- Viscosity

Once tubing has been selected:
1. Test it in your application.
2. Monitor tubing life in duty cycle, look for signs of tubing fatigue (e.g. small pinhole leaks, abrasion, etc.).
3. Set up maintenance schedule to anticipate tubing failure.

Monitor the time tubing is in the pump. Advance it 8 to 12 inches on a daily, weekly, monthly, or quarterly basis, depending on your experience with your maintenance schedule.

Testing Parameters

The charts found on pages TD-21–27 indicate the average life of Masterflex tubing used in our Standard-style pump heads unless otherwise noted. The tubing life is shown in hours at various motor speeds while continuously pumping water at 21°C (70°F) and 0 psig (0 bar). This data has been collected from years of testing Masterflex peristaltic pumps. Masterflex tubing life data is calculated from time to failure or reduction to 50% flow rate, whichever comes first.

These charts are best used as a general comparison only. It is not guaranteed that you will achieve the results shown. Generally, the life of all types of tubing is adversely affected by temperature, pump motor rpm, chemical compatibility, and pressure.
Tips for Dispensing Applications

Masterflex® digital pump drives are ideal for laboratory and process dispensing applications. Accuracies of ±0.5% and better are achievable with careful pump system selection and by following some simple guidelines.

Dispensing Benefits of Masterflex® Tubing Pumps
- Variety of available tubing formulations ensures chemical and biocompatibility with your fluid
- A continuous piece of tubing from inlet to outlet minimizes obstructions and interruptions in the fluid path
- Gentle pumping action is ideal for shear-sensitive fluids and fluids containing proteins and other large molecules
- Wide range of flow rates provides flexibility in volume and time of dispense
- Simple and reliable calibration ensures accuracy and repeatability
- Nonsiphoning: prevents backflow and enhances dispensing accuracy
- Multichannel capability with synchronous or independently controlled channels

Pump Head Selection
Masterflex Standard, Easy-Load®-series, and High-performance pump heads all deliver excellent results in dispensing applications.

Multichannel Options
Multichannel options include either stacking single-channel heads on a single drive or using a multichannel pump head.

Stacking multiple Easy-Load-series single-channel pump heads offers the advantage of reduced pulsation due to the offset rollers. Uniting the flow channels from two stacked heads into a single output line will greatly reduce pulsation (a measured reduction of up to 95%).

Drive Selection
Masterflex® offers digital drives with features designed for dispensing applications. Drives are available in console, modular, and modular washdown configurations.

Dispense Features
- Dispense by volume—lets you program the volume to be dispensed for either single or multiple cycles
- Copy—lets you program the number of dispense cycles or repeats
- Dispense interval—an adjustable time delay between cycles gives you ample time to reposition the tubing or filling accessory, or to switch target vessels
- Cumulative volume—displays the total volume dispensed over multiple cycles (available on the P/S and I/P digital process console drives; 07575-00 and 77420-00)
- Dispense by weight—requires an RS-232 balance-compatible interface (available on the 07750-series P/S computer-compatible drive and on the P/S Digi-Static® modular dispensing pump 77310-00/77340-00)
- Anti-drip feature—briefly reverses the rollers at the end of the dispense cycle, further ensuring accuracy (available on the P/S Digi-Static® modular dispensing pump)

Temperature Sensitivity
The friction caused by the rollers moving over the tubing will generate measurable heat. This heat generation can affect the mechanical properties of the tubing and result in slight variations in performance. PVC-based formulations show the most pronounced temperature sensitivity. Due to minimal temperature sensitivity, recommended formulations for dispensing applications are BioPharm silicone, PharMed® BPT, PharmaPure®, Norprene®, and Gore® STA-PURE®, STA-PURE tubing has characteristics that make it ideal for dispensing; superior shape memory throughout its life in the pump, little cross-sectional distortion over time, and minimal variation in flow over time. This superior shape memory is sufficient to offset the need for an initial break-in period.

Calibration
Proper calibration is essential to dispensing accuracy. Follow the directions in the drive operating manual and perform no more than two or three successive calibrations. Masterflex digital dispensing drives store one calibration value per tubing size and will hold that value in memory until the pump is recalibrated for that particular tubing size. Calibration conditions should be identical to the actual dispensing conditions. Backpressure, fluid viscosity, and temperature should not vary from calibration throughout dispensing. Remember to break in the tubing for the described period (see above) before calibration.

Size/Flow Range
Size your tubing so that you are operating at the middle of the tubing's flow range (volume per unit time). This will give you maximum flexibility to make adjustments without approaching either the upper or lower limit of the tubing flow range.

Loading the Tubing in the Pump Head
You will realize optimal performance, and best pumping life, if you are careful not to impart any twist or torsion to the tubing when loading. Tubing has a natural curvature—follow that curvature when laying the tubing across rollers or onto occlusion bed.

Tubing Break-In Period
Peristaltic pump tubing shows a distinct increase in flow stability after the first few minutes of pumping. During this break-in period the tubing adapt to the repeated compression of the rollers. For tubing in the P/S® sizes the break-in period is 10 to 15 minutes; for I/P® tubing sizes, 15 to 20 minutes.
Pumping Abrasive Fluids

Masterflex® tubing pumps are well suited for pumping abrasive slurries for several reasons. The peristaltic pumping action is gentle on the fluid, reducing tubing wear. The only part of the pump the fluid comes in contact with is a smooth piece of tubing; there are no fittings or valves that particles may clog. Abrasive materials shorten the life of any pump, but with peristaltic pumps the tubing is quickly and inexpensively replaced.

Follow these suggestions to get the maximum performance from your peristaltic tubing pump:

1. Choose abrasion-resistant tubing.
 Norprene® and PharMed® BPT have good abrasion resistance. Tygon® is fair with abrasives, while C-FLEX®, silicone, and Viton® are moderately resistant to wear from abrasive materials.

2. Use an adjustable-occlusion pump head.
 The standard occlusion for all Masterflex® fixed-occlusion pump heads is shown in Figure A. Abrasive materials, especially hard particles, are pressed into the tubing wall and can cause a great amount of wear. Using an adjustable-occlusion pump head allows you to reduce the amount that the tubing is squeezed (Figure A); the result is less wear on the tubing. By increasing the occlusion to prime the tubing and then reducing it to pump, you’ll get maximum performance from your pump with the least amount of wear on the tubing.

![Figure A](image)

Viscous Fluid Behavior

Effective viscosity can be better understood by looking at the behavior of viscous fluids at different shear rates. There are a number of types of viscous fluid behavior.

1. Newtonian fluids
 Viscosity is constant with change in shear rate or agitation. Forces to cause motion increase proportionately as speed increases. Fluids showing Newtonian behavior include water, mineral oils, syrup, hydrocarbons, and resins.

2. Thixotropic fluids
 Viscosity decreases as shear rate or agitation increases. The forces to cause motion are relatively lower as speed increases. Examples are soaps, tars, vegetable oils, shortening, glue, inks, peanut butter, and some slurries.

3. Dilatant fluids
 Viscosity increases as shear rate increases. Forces to cause motion may greatly increase as speed increases. Some liquids showing dilatant behavior are slurries, clay, and candy compounds.

4. Plastic and pseudo-plastic fluids
 Viscosity decreases as shear rate increases, but initial viscosity may not be great enough to prevent start of flow in a typical pumping system. Typical plastic fluids are gels, latex paints, lotions, and shortening.

![Viscous Fluid Behavior Diagram](image)
Masterflex® Peristaltic Pumps—
Ideal for Pumping Viscous Fluids

To maximize the pumping efficiency of viscous fluid, follow these steps.

1. **Slow down the speed of your pump.** Increasing the speed beyond a certain point will not have any effect on flow rate. The maximum efficient speed of the pump decreases as viscosity increases and tubing size decreases.
2. **Choose a larger size tubing** than required to pump water. The table below will help you choose the best size.
3. **Choose a firm tubing** such as Norprene®, PharMed® BPT, Viton®, or Tygon® LFL. Performance will be better because the tubing returns to its original shape quickly after pump head occlusion.
4. **Select a tubing with a smooth bore.** A smooth bore will decrease frictional forces. Tygon, Tygon LFL, silicone, or BioPharm silicone formulations are good choices.
5. **Decrease the viscosity of your fluid.** Heat your fluid if possible; viscosity usually decreases with temperature.

Tubing Selection Guide for Pumping Viscous Fluids

<table>
<thead>
<tr>
<th>Viscosity in centipoise (cP)</th>
<th>Flow rate in mL/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>500</td>
<td>35</td>
</tr>
<tr>
<td>800</td>
<td>50</td>
</tr>
<tr>
<td>1300</td>
<td>75</td>
</tr>
<tr>
<td>2700</td>
<td>100</td>
</tr>
<tr>
<td>4000</td>
<td>150</td>
</tr>
<tr>
<td>4700</td>
<td>200</td>
</tr>
</tbody>
</table>

How to use this graph

Example: You have an 800 centipoise fluid that you wish to pump at 150 mL/min. Find 150 mL/min on the “flow rate” axis of the graph above and find 800 centipoise on the “viscosity” axis. Follow the two points to where they meet. The graph shows that P/S® 35 and P/S® 36 tubing will produce the desired flow rate. These tubing sizes will also work for all lower viscosities and lower flow rates.

Considerations: All viscosity test data was obtained using firm tubing materials such as Norprene®, PharMed® BPT, Viton®, and Tygon® because these formulations perform the best in high-viscosity applications. Tests were performed with fluids at 21°C (70°F) and 0 psig (0 bar) of back pressure. The graph assumes Newtonian fluid behavior and is best used as a general guideline only; it is not a guarantee that you will achieve the results shown.

Pulse Dampener

Virtually eliminates pulsation in your output flow. Features a polyethylene body and includes five pairs of fittings and PTFE pipe-thread tape.

- **Accepted tubing:** All P/S® sizes and I/P® 26
- **Fittings included (tubing ID x NPT(M) thread):**
 - ¼" x ⅛”, ⅜" x ⅛” PP fittings; ⅜" x ⅛" and ⅜" x ⅛” HDPE fittings
- **Dampener connections:** ⅛” NPT(F)
- **Volume, dead:** 190 mL; internal: 60 to 180 mL
- **Max. pressure:** 60 psi (4.3 bar) at 21°C (70°F)

07596-20 Pulse dampener
• Tubing Life
• Pressure Guidelines
• Vacuum/Suction Lift
• Gas Permeability

Ensure top performance with your Masterflex® pump head by using precision-extruded Masterflex® tubing to deliver accurate flow rates. Twenty-one different material formulations are available.

To order the correct tubing:
1. Consider all the aspects of your application: flow rate, pressure, etc.
2. Review the chemical compatibility data on pages TD-12–13, as well as specific information about individual tubing materials on pages TD-8–11.
3. Use the "Tubing Material Life Comparison" graph and table at right to select the tubing with the longest life.

If your application requires the generation of high pressure or a strong vacuum/suction lift, refer to the "Pressure Guidelines" and "Vacuum/Suction Lift" graphs at right. These graphs can assist you in determining which tubing will pressurize most rapidly or develop the strongest vacuum/suction lift in your application.

If your application requires pumping air-sensitive gases or liquids, refer to the "Gas Permeability" graph below right to choose the tubing with the lowest permeability.

If you are pumping a viscous fluid, refer to the "Tubing Selection Guide for Pumping Viscous Fluids" graph on page TD-19 to select the best tubing size.

P/S® Precision Tubing Life Characteristics

The graph at right shows average tubing life vs motor rpm for selected P/S tubing formulations.

Pressure Guidelines

- **High**
 - Tygon® Type® LFL
 - Norprene® PhaMed® BPT
 - Viton®
 - C-FLEX® Silicone

- **Low**
 - Tygon® Type® LFL
 - Norprene® PhaMed® BPT
 - Viton®
 - C-FLEX® Silicone

All tubing types accept pressure, but the firmer formulations accept more pressure than the softer types of tubing.

Vacuum/Suction Lift

- **Excellent**
 - Tygon® Type® LFL
 - Norprene® PhaMed® BPT
 - Viton®
 - C-FLEX® Silicone

- **Good**
 - Tygon® Type® LFL
 - Norprene® PhaMed® BPT
 - Viton®
 - C-FLEX® Silicone

- **Poor**
 - Tygon® Type® LFL
 - Norprene® PhaMed® BPT
 - Viton®
 - C-FLEX® Silicone

Vacuum/suction lift capability depends greatly on the tubing's ability to maintain its shape. Thus, a firmer tubing type in the smallest possible bore size will generate a stronger vacuum for your application. Higher drive speeds are required to generate the strongest possible vacuum with some tubing sizes.

Gas Permeability

- **Low**
 - Viton®
 - Tygon® Type® LFL
 - Norprene® PhaMed® BPT
 - C-FLEX® Silicone

- **High**
 - Viton®
 - Tygon® Type® LFL
 - Norprene® PhaMed® BPT
 - C-FLEX® Silicone

To minimize permeation of gases through the tubing wall, use firm tubing. Masterflex P/S High-performance precision tubing (P/S 16, P/S 24, P/S 35, and P/S 38) is less permeable than Precision tubing sizes. See pages TD-12–13 for tubing permeability to various gases.
P/S® Precision and High-Performance Pump Tubing (cont.)

Performance Data for Tygon®, Silicone, and Viton® Tubing Formulations

P/S® Precision Tubing

Precision tubing (P/S 13, P/S 14, P/S 16, P/S 25, P/S 17, and P/S 18) is made to tight tolerances that ensure accurate flow rates and long tubing life. The graph below shows average tubing life while pumping water through an Easy-Load® II pump head at 21°C (70°F), 0 psi, 600 rpm.

![Graph showing average tubing life for Tygon®, Silicone, and Viton® tubing formulations.]

P/S® High-Performance Precision Tubing

High-performance precision tubing (P/S 15, P/S 24, P/S 35, and P/S 36) improves pressure generation, suction lift, tubing life, and the ability to pump viscous fluids. The graph below shows average tubing life while pumping water through an Easy-Load II pump head at 21°C (70°F), 0 psi, 600 rpm.

![Graph showing average tubing life for P/S® High-Performance tubing formulations.]

Performance Data for PharmaPure®, Norprene®, PharMed® BPT, and BioPharm Plus Tubing Formulations

P/S® Precision Tubing

Precision tubing (P/S 13, P/S 14, P/S 16, P/S 25, P/S 17, and P/S 18) is made to tight tolerances that ensure accurate flow rates and long tubing life. The graph below shows average tubing life while pumping water through an Easy-Load® II pump head at 21°C (70°F), 0 psi, 600 rpm.

![Graph showing average tubing life for PharmaPure®, Norprene®, PharMed®, and BioPharm Plus tubing formulations.]

P/S® High-Performance Precision Tubing

High-performance precision tubing (P/S 15, P/S 24, P/S 35, and P/S 36) improves pressure generation, suction lift, tubing life, and the ability to pump viscous fluids. The graph below shows average tubing life while pumping water through an Easy-Load II pump head at 21°C (70°F), 0 psi, 600 rpm.

![Graph showing average tubing life for P/S® High-Performance and BPT tubing formulations.]

TD-21
Performance Data for Norprene® and PharMed® BPT Tubing Formulations

P/S® High-Performance Precision Tubing

High-performance precision tubing (P/S® 15, P/S® 24, P/S® 35, and P/S® 36) improves pressure generation, suction lift, tubing life, and the ability to pump viscous fluids. The graph at right shows average tubing life while pumping water through a High-Performance pump head at 21°C (70°F), 600 rpm.

Performance Data for Silicone (Peroxide-Cured) Tubing Formulation

P/S® High-Performance Precision Tubing

High-performance pressure tubing (P/S® 15, P/S® 24, P/S® 35, and P/S® 36) improves pressure generation, suction lift, tubing life, and the ability to pump viscous fluids. The graph at right shows average tubing life while pumping water through a High-Performance pump head at 21°C (70°F), 600 rpm.
B/T® Precision and High-Performance Pump Tubing

- Tubing Life
- Pressure Guidelines
- Vacuum/Suction Lift
- Gas Permeability

Ensure top performance with your Masterflex® pump head by using precision-extruded Masterflex tubing to deliver accurate flow rates. Nine different material formulations are available for B/T pumps.

To order the correct tubing:
1. Consider all the aspects of your application: flow rate, pressure, etc.
2. Review the chemical compatibility data and material specifications.
3. Use the “Tubing Material Life Comparison” graph and table at right to select the tubing with the longest life.

If your specific application requires the generation of high pressure or a vacuum, refer to the “Pressure Guidelines” and “Vacuum/Suction Lift” graphs at right. These help you determine which tubing will pressureize the most rapidly or develop the strongest vacuum/suction lift in your particular application.

If your application requires pumping air-sensitive gases or liquids, refer to the “Gas Permeability” graph below right to choose the tubing with the lowest permeability. If you are pumping a visous fluid, refer to the “Tubing Selection Guide for Pumping Viscous Fluids” graph on TD–19 to select the best tubing size.

B/T® Precision Tubing Life Characteristics

Like the P/S® and I/P® tubing sizes, B/T sizes B/T 86, B/T 88, B/T 90, and B/T 92 offer all the characteristics of the smaller size tubing styles at flow ranges up to 45 LPM (12 GPM). The graph below shows average tubing life while pumping water through a Rapid-Load® pump head at 21°C (70°F).

For example, using this graph it can be determined that the expected average life of Masterflex® Norprene® Food tubing at 100 rpm is over 1000 hours.

Tubing Material Life Comparison

The graph above displays the average tubing life in hours of Masterflex® B/T® 90 tubing. This tubing was tested in a Masterflex® Standard pump head continuously pumping water at 21°C (70°F) and 0 paig (0 bar). Tubing life is calculated to time of failure or of 50% reduction in flow rate, whichever comes first. Reduce drive speeds to extend tubing life. Average tubing life for P/S®, I/P®, and B/T® 90 tubing at various rpm are listed in the table below.

<table>
<thead>
<tr>
<th>Tubing class</th>
<th>P/S® 16</th>
<th>I/P® 73</th>
<th>B/T® 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive rpm</td>
<td>50</td>
<td>600</td>
<td>50</td>
</tr>
<tr>
<td>Norprene® Food, B/T®</td>
<td>10,000</td>
<td>1000</td>
<td>4000</td>
</tr>
<tr>
<td>Tyon® LFL</td>
<td>1600</td>
<td>600</td>
<td>400</td>
</tr>
<tr>
<td>C-FLEX®, Silicone</td>
<td>500</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>Tyon®</td>
<td>200</td>
<td>50</td>
<td>180</td>
</tr>
<tr>
<td>Viton®</td>
<td>150</td>
<td>30</td>
<td>120</td>
</tr>
</tbody>
</table>

More info

Use only Masterflex® tubing with Masterflex® pumps to ensure optimal performance. Use of other tubing may void applicable warranties.

Pressure Guidelines

All tubing types accept pressure, but the firmer formulations accept more pressure than the softer types of tubing.

Vacuum/Suction Lift

Vacuum/suction lift capability depends greatly on the tubing's ability to maintain its shape. Thus, a firmer tubing type in the smallest possible bore size will generate a stronger vacuum for your application. Higher drive speeds are required to generate the strongest possible vacuum with some tubing sizes.

Gas Permeability

To minimize permeation of gases through the tubing wall, use firm tubing. Masterflex B/T High-performance precision tubing (B/T 86, B/T 90) is less permeable than Precision tubing sizes. See pages TD–20–23 for tubing permeability to various gases.
Selection Guidelines

Tubing life performance is just one of many factors present in your pumping applications. These reference graphs are designed to help you select tubing for your pumping application.

In general:

- The Norprene®, PharMed® BPT, and PharmaPure® tubing materials offer the best tubing life in all applications where the fluid being pumped is chemically compatible.
- Peroxide-cured silicone tubing offers up to 40% more tubing life. Platinum-cured silicone tubing offers better chemical compatibility. Biopharm Plus silicone tubing lasts up to five times longer than other platinum silicone tubings.
- Thicker-walled tubing has a 20 to 30% increased life over thinner-walled tubing.
- High-Pressure Norprene and PharMed BPT have the best life in pressure applications.
- Other factors to consider when determining the best tubing for your application include:
 - Chemical compatibility
 - Fluid temperature
 - System pressure
 - Motor rpm
 - Duty cycle
 - Maintenance periods
 - Clarity of tubing
 - Viscosity
 - Tubing purity

Performance Data for Norprene®, PharMed® BPT, and Silicone Tubing Formulations

Norprene®, PharMed® BPT Tubing, size I/P 73

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>Average Life (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>800</td>
</tr>
<tr>
<td>20</td>
<td>600</td>
</tr>
</tbody>
</table>

Using Standard Pump Head (07019-series) @ 650 rpm

Norprene® Tubing

<table>
<thead>
<tr>
<th>Tubing Size</th>
<th>Average Life (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/P® 73</td>
<td>500</td>
</tr>
<tr>
<td>I/P® 82</td>
<td>400</td>
</tr>
</tbody>
</table>

Using Easy-Load® Pump Head (77601-series) @ 650 rpm

Peroxide-Cured Silicone Tubing

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>Average Life (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1500</td>
</tr>
<tr>
<td>15</td>
<td>1200</td>
</tr>
<tr>
<td>20</td>
<td>900</td>
</tr>
<tr>
<td>25</td>
<td>600</td>
</tr>
</tbody>
</table>

Using High-Performance Pump Head (77600-62) @ 650 rpm

These graphs indicate the average life of Masterflex® tubing used in our Standard pumps. Tubing life is shown in hours at various motor speeds while continuously pumping water at 21°C (70°F) and 0 psi (0 bar). This data has been collected from years of testing Masterflex peristaltic pumps, and is calculated from time to failure or reduction to 50% flow rate, whichever comes first.

These graphs are best used as a general comparison only. It is not guaranteed that you will achieve the results shown. Generally, the life of all tubing types is adversely affected by temperature, pump motor rpm, chemical compatibility and pressure.
Performance Data for Silicone (Peroxide-Cured) Tubing, size I/P 73, using Standard Head (07019-series)

Performance Data for Tygon® Tubing, size I/P 73, using Standard Head (07019-series)
• Tubing Life
• Pressure Guidelines
• Vacuum/Suction Lift
• Gas Permeability

Ensure top performance with your Masterflex® pump head by using precision-extruded Masterflex tubing to deliver accurate flow rates. Nine different material formulations are available for B/T pumps.

To order the correct tubing:
1. Consider all the aspects of your application: flow rate, pressure, etc.
2. Review the chemical compatibility data on pages TD-12–13, as well as specific information about individual tubing materials on pages TD-8–11.
3. Use the “Tubing Material Life Comparison” graph and table at right to select the tubing with the longest life.

If your specific application requires the generation of high pressure or a strong vacuum/suction lift, refer to the “Pressure Guidelines” and “Vacuum/Suction Lift” graphs at right. These graphs help you determine which tubing will pressurize the most rapidly or develop the strongest vacuum/suction lift in your particular application.

If your application requires pumping air-sensitive gases or liquids, refer to the “Gas Permeability” graph below right to choose the tubing with the lowest permeability.

If you are pumping a viscous fluid, refer to the “Tubing Selection Guide for Pumping Viscous Fluids” graph on TD–19 to select the best tubing size.

Tubing Material Life Comparison

The graph above displays the average tubing life in hours of Masterflex® B/T90 tubing. This tubing was tested in a Masterflex® Standard pump head continuously pumping water at 21°C (70°F) and 0 psig (0 bar). Tubing life is calculated to time of failure or of 50% reduction in flow rate, whichever comes first. Reduce drive speeds to extend tubing life. Average tubing life for P/S® 16, I/P® 73, and B/T® 90 tubing at various rpm are listed in the table below.

<table>
<thead>
<tr>
<th>Tubing class</th>
<th>P/S® 16</th>
<th>I/P® 73</th>
<th>B/T® 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive rpm</td>
<td>50</td>
<td>600</td>
<td>50</td>
</tr>
<tr>
<td>Norprene®</td>
<td>10,000</td>
<td>1000</td>
<td>400</td>
</tr>
<tr>
<td>PhaMed® B/T®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tygon® LFL</td>
<td>1600</td>
<td>700</td>
<td>800</td>
</tr>
<tr>
<td>C-FLEX® Silicone</td>
<td>500</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Tygon®</td>
<td>200</td>
<td>50</td>
<td>180</td>
</tr>
<tr>
<td>Viton®</td>
<td>150</td>
<td>30</td>
<td>120</td>
</tr>
</tbody>
</table>

All tubing types accept pressure, but the firmer formulations accept more pressure than the softer types of tubing.

Vacuum/Suction Lift

Vacuum/suction lift capability depends greatly on the tubing’s ability to maintain its shape. Thus, a firmer tubing type in the smallest possible bore size will generate a stronger vacuum for your application. Higher drive speeds are required to generate the strongest possible vacuum with some tubing sizes.

Gas Permeability

To minimize permeation of gases through the tubing wall, use firm tubing. Masterflex® B/T High-performance precision tubing (B/T 86, B/T 90) is less permeable than Precision tubing sizes. See pages TD-20–23 for tubing permeability to various gases.
Selection Guidelines
Tubing life performance is just one of many factors present in your pumping applications. These reference graphs are designed to help you select tubing for your pumping application.
In general:
- Norprene and PharMed BPT, and PharmaPure® tubing materials offer the best tubing life in all applications where the fluid being pumped is chemically compatible.
- Peroxide-cured silicone tubing offers up to 40% more tubing life. Platinum-cured silicone tubing offers better chemical compatibility. Biopharm Plus silicone tubing lasts up to five times longer than other platinum silicone tubings.
- Thicker-walled tubing has a 20 to 30% increased life over thinner-walled tubing.
- Norprene and PharMed BPT have the best life in pressure applications.

Other factors to consider when determining the best tubing for your application include:
- Fluid compatibility
- Fluid temperature
- System pressure
- Motor rpm
- Duty cycle
- Maintenance periods
- Clarity of tubing
- Tubing purity
- Viscosity

Testing Parameters
Once tubing has been selected:
1. Test it in your application.
2. Monitor tubing life in duty cycle, look for signs of tubing fatigue (i.e., small pin-hole leaks, abrasion, etc.).
3. Set up maintenance schedule to anticipate tubing failure. Monitor the time tubing is in the pump. Advance it 12 to 18 inches on a daily, weekly, monthly or quarterly basis, depending on your experience with your maintenance schedule.

Performance Data for Norprene®, Silicone, and Tygon® LFL Tubing Formulations
Masterflex® Tubing Pump Flow Performance

P/S® Easy-Load® II (77200- and 77201-series) and Easy-Load 3 Pump Head (77800-series)

I/P® Easy-Load Pump Head (77601-series)

I/P® High-Performance Pump Head (77600-62)

Flow Rates

Masterflex® offers a wide range of pump systems and tubing sizes. These graphs are designed to help you select a size for your application.
Pressure, in general, does not affect the flow rate of the pump head and tubing combination in water applications, unless the pressure exceeds the rating for continuous duty operation. At pressures above this rating to the maximum, the flow rates will drop off.

The exact flow rates will vary from application to application depending on the tubing material and occlusion.
Pump Head Torque Requirements

How to Use These Tables

Use this guide to help you select the number of pump heads and tubing formulations that can be used with your drives.

To define your torque needs:
1. Consider the following:
 - Discharge pressure (increase necessary torque)
 - Tubing material (firm or soft)
2. Multiply by the number of pump heads you would like to use (to run two heads with the same size and formulation of tubing, multiply the value from the table by 1.6). See example at right.

3. See drive specifications for maximum torque limits. (Consider starting torque when selecting a drive.) The torque of the drive must exceed the starting torque value for the pump head/tubing combination. Note: starting torque is equal to approximately three times (3x) maximum running torque.

4. Several factors influence starting torque:
 - New or used tubing
 - Tubing formulation
 - Length of time tubing has been in closed pump head
 - Without running
 - Temperature

Starting torque using P/S® and I/P® Standard pump head at 0 bar (0 psi) and 21°C (70°F)

<table>
<thead>
<tr>
<th>Tubing size</th>
<th>C-FLEX® silicone</th>
<th>BioPharm Plus silicone</th>
<th>Viton®</th>
<th>Tygon® Lab</th>
<th>Tygon® LFL</th>
<th>Tygon® Food/ Tygon Fuel & Lubricant</th>
<th>Tygon® Chemical®</th>
<th>Norprene® PharoMed® BPT</th>
<th>PharmaPure®</th>
<th>Style 100 RF Silicone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg-cm oz-in</td>
</tr>
<tr>
<td>P/S® Precision pump tubing</td>
<td></td>
</tr>
<tr>
<td>P/S 13</td>
<td>0.79 11.58</td>
<td>0.94 13.06</td>
<td>1.22 16.70</td>
<td>2.16 30.60</td>
<td>1.22 17.00</td>
<td>7.78 110</td>
<td>7.78 110</td>
<td>7.78 110</td>
<td>7.78 110</td>
<td>7.78 110</td>
</tr>
<tr>
<td>P/S 14</td>
<td>1.15 16.90</td>
<td>1.30 18.35</td>
<td>1.66 23.00</td>
<td>3.24 45.00</td>
<td>1.94 27.00</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
</tr>
<tr>
<td>P/S 16</td>
<td>1.16 17.00</td>
<td>1.37 19.00</td>
<td>2.52 35.00</td>
<td>4.32 60.00</td>
<td>2.88 40.00</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
</tr>
<tr>
<td>P/S 17</td>
<td>2.16 30.60</td>
<td>4.68 65.00</td>
<td>2.16 30.60</td>
<td>6.12 85.00</td>
<td>3.60 50.00</td>
<td>5.40 75.00</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
</tr>
<tr>
<td>P/S 18</td>
<td>2.52 35.00</td>
<td>3.67 51.00</td>
<td>3.60 50.00</td>
<td>5.76 80.00</td>
<td>5.40 75.00</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
</tr>
</tbody>
</table>

Note: Tygon® Chemical is not recommended for use with a polycarbonate Standard pump head. It is recommended for use with a PPS Standard pump head.

Starting torque using P/S® and I/P® Easy-Load® and Easy-Load® II pump heads at 0 bar (0 psi) and 21°C (70°F)

<table>
<thead>
<tr>
<th>Tubing size</th>
<th>C-FLEX® silicone</th>
<th>BioPharm Plus silicone</th>
<th>Viton®</th>
<th>Tygon® Lab</th>
<th>Tygon® LFL</th>
<th>Tygon® Food/ Tygon Fuel & Lubricant</th>
<th>Tygon® Chemical®</th>
<th>Norprene® PharoMed® BPT</th>
<th>PharmaPure®</th>
<th>Style 100 RF Silicone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg-cm oz-in</td>
</tr>
<tr>
<td>P/S® Precision pump tubing</td>
<td></td>
</tr>
<tr>
<td>P/S 13</td>
<td>0.79 11.58</td>
<td>0.94 13.06</td>
<td>1.22 16.70</td>
<td>2.16 30.60</td>
<td>1.22 17.00</td>
<td>7.78 110</td>
<td>7.78 110</td>
<td>7.78 110</td>
<td>7.78 110</td>
<td>7.78 110</td>
</tr>
<tr>
<td>P/S 14</td>
<td>1.15 16.90</td>
<td>1.30 18.35</td>
<td>1.66 23.00</td>
<td>3.24 45.00</td>
<td>1.94 27.00</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
</tr>
<tr>
<td>P/S 16</td>
<td>1.16 17.00</td>
<td>1.37 19.00</td>
<td>2.52 35.00</td>
<td>4.32 60.00</td>
<td>2.88 40.00</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
</tr>
<tr>
<td>P/S 17</td>
<td>2.16 30.60</td>
<td>4.68 65.00</td>
<td>2.16 30.60</td>
<td>6.12 85.00</td>
<td>3.60 50.00</td>
<td>5.40 75.00</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
</tr>
<tr>
<td>P/S 18</td>
<td>2.52 35.00</td>
<td>3.67 51.00</td>
<td>3.60 50.00</td>
<td>5.76 80.00</td>
<td>5.40 75.00</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
<td>6.48 90</td>
</tr>
</tbody>
</table>

Note: Norprene® is not recommended for use in this pump head.

Continued on next page
How to Use This Table

Use this guide to help you select the number of pump heads and tubing formulations that can be used with your drives.

To define your torque needs:
1. Consider the following:
 - Discharge pressure (increase necessary torque)
 - Tubing material (firm or soft)
2. Multiply by the number of pump heads you would like to use (to run two heads with the same size and formulation of tubing, multiply the value from the table by 1.8). See example at right.

3. See drive specifications for maximum torque limits. (Consider starting torque when selecting a drive.) The torque of the drive must exceed the starting torque value for the pump head/tubing combination. Note: starting torque is equal to approximately three times (3x) maximum running torque.

4. Several factors influence starting torque:
 - New or used tubing
 - Tubing formulation
 - Length of time tubing has been in closed pump head without running
 - Temperature

Starting torque using P/S® and I/P® High-Performance pump head at 0 bar (0 psi) and 21°C (70°F)

<table>
<thead>
<tr>
<th>Tubing size</th>
<th>C-FLEX®/silicone</th>
<th>BioPharm Plus silicone</th>
<th>Viton®</th>
<th>Tygon® Lab</th>
<th>Tygon® LFL</th>
<th>Tygon® Food / Tygon® Fuel & Lubricant</th>
<th>Tygon® Chemical</th>
<th>Norprene®/PharMed® BPT</th>
<th>PharMePure®</th>
<th>Style 100 RF Silicone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg-cm oz-in</td>
<td></td>
</tr>
</tbody>
</table>

P/S® High-pressure pump tubing
- P/S 15HP® NA 43.77 608 NA NA NA NA
- P/S 16HP® NA 50.68 704 NA NA NA NA

P/S® High-performance precision pump tubing
- P/S 24 NA 12.34 176 NA NA NA NA
- P/S 36 NA 13.82 192 NA NA NA NA

I/P® High-performance precision pump tubing
- I/P 70® 23.04 320 25.34 352 NA NA 34.56 480 32.25 448 NR NR NR NR 50.68 704 NR NR 24.19 336
- I/P 88® 18.43 256 24.19 336 NA NA — — 26.49 368 NR NR NR NR 43.77 608 NR NR 34.56 480
- I/P 89® 16.13 224 18.43 256 NA NA 36.86 512 26.49 368 NR NR NR NR 46.08 640 NR NR 41.47 576

*Can only be used and started on a 100 rpm drive †Starting torque based on notch #1.
NA = Not available or applicable NR= Not recommended for use in this pump head

Drive torque requirements to obtain 17 LPM with I/P® High-Performance pump heads

Choose your drive based on desired flow rate, pressure in your application, and type of tubing used. For example, if you need 17 LPM at 20 psi and are using Norprene® tubing, you need a drive that supplies 0.25 hp (07583-50).
Masterflex® vacuum/suction lift data

Masterflex® pumps offer excellent vacuum/suction lift. To achieve maximum lift, choose your tubing size and material carefully. The lower the I-D to wall ratio, the better the vacuum performance. The stiffer the wall material, the better the vacuum level. In general, Norprene®/PharMed® BPT materials enable you to generate the highest level of vacuum before collapsing, and give you the longest life in a fluidless application; adjustable occlusion pump heads generate the best level of vacuum.

The easy-to-use graph and table below can help you determine the speed required to achieve the vacuum level required. All of the vacuum tests were conducted with either the standard, high-performance, or rapid-load® pump heads, depending on tubing size. The rated vacuum was generated after running for two minutes.

Vacuum/suction lift capability depends greatly on the tubing’s ability to maintain its shape. Thus, a firmer tubing type in the smallest possible bore size will generate a stronger vacuum for your application. Higher drive speeds are required to generate the strongest possible vacuum with some tubing sizes.

Example 1
To generate a 13 in. Hg vacuum (almost 60%) using P/S® 13 silicone tubing, the motor speed must be at least 5 rpm. The pump system will generate the vacuum in about 30 to 60 seconds, depending on the length of the tubing system that needs to be evacuated.

Example 2
To develop a suction lift of 8.8 m (29 ft) H2O with P/S® 15 Norprene® tubing, the motor speed needs to be >80 rpm. At 50 rpm it will take approximately 2 to 3 minutes to prime the pump.

Specifications for Masterflex® precision and high-performance pump tubing

<table>
<thead>
<tr>
<th>Tubing size</th>
<th>C-FLEX®/Silicone</th>
<th>Tygon®/Tygon® LFL</th>
<th>Norprene®/PharMed® BPT</th>
<th>Viton®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max vac. (mm in.) Hg</td>
<td>Suction (m ft H2O)</td>
<td>Pump speed (rpm)</td>
<td>Max vac. (mm in.) Hg</td>
<td>Suction (m ft H2O)</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>P/S®13</td>
<td>560 (24)</td>
<td>7.6 (25)</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>P/S®14</td>
<td>560 (24)</td>
<td>7.6 (25)</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>P/S®16</td>
<td>560 (24)</td>
<td>7.6 (25)</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>P/S®25</td>
<td>560 (24)</td>
<td>7.6 (25)</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>P/S®17</td>
<td>313 (12)</td>
<td>4.3 (14)</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>P/S®18</td>
<td>313 (12)</td>
<td>4.3 (14)</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>P/S®15</td>
<td>560 (24)</td>
<td>7.6 (25)</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>P/S®24</td>
<td>560 (24)</td>
<td>7.6 (25)</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>P/S®35</td>
<td>493 (19)</td>
<td>6.7 (22)</td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>P/S®36</td>
<td>493 (19)</td>
<td>6.6 (22)</td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>I/P®26</td>
<td>560 (24)</td>
<td>7.6 (25)</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>I/P®73</td>
<td>560 (24)</td>
<td>7.6 (25)</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>I/P®82</td>
<td>515 (20)</td>
<td>7.0 (23)</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>I/P®70</td>
<td>560 (24)</td>
<td>7.6 (25)</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>I/P®88</td>
<td>470 (18)</td>
<td>6.4 (21)</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>I/P®99</td>
<td>314 (12)</td>
<td>4.3 (14)</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>B/T®86</td>
<td>560 (24)</td>
<td>7.6 (25)</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>B/T®88</td>
<td>515 (20)</td>
<td>7.0 (23)</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>B/T®90</td>
<td>470 (18)</td>
<td>6.4 (21)</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>B/T®92</td>
<td>470 (18)</td>
<td>6.4 (21)</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>
NOTE: Pressure curves developed with zero to one foot suction lift. Suction lift curves developed with zero discharge pressure. Pump speed: 600 rpm. Fluid: water at ambient temperature.
NOTE: Pressure curves developed with zero to one foot suction lift. Suction lift curves developed with zero discharge pressure. Pump speed: 650 rpm. Fluid: water at ambient temperature.